
PHYSICAL REVIEW E 68, 046608 ~2003!
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium

Ken Kang-Hsin Wang* and Zhen Ye†
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Chungli, Taiwan 32054, Republic of China
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In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random
system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan
et al. @J. Opt. Soc. Am. B10, 391 ~1993!#. A set of self-consistent equations is presented, accounting for the
multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in
the frequency domain. The transport properties within, near the edge of, and nearly outside the localization
regime are investigated for different parameters such as filling factor and system size. The results show that
within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves
follow an intuitive but expected picture. That is, they increase with traveling path as more and more random
scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large
enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or
outside the localization regime, the results of diffusive waves are compared with the diffusion approximation,
showing less encouraging agreement as in other systems@Asatryanet al., Phys. Rev. E67, 036605~2003!#.

DOI: 10.1103/PhysRevE.68.046608 PACS number~s!: 42.25.Hz, 41.90.1e
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I. INTRODUCTION

Waves are a ubiquitous phenomenon that is relevan
our everyday life. Our knowledge about nature is main
obtained through either acoustic or electromagnetic wa
When waves propagate through a random medium, some
culiar properties emerge and some of them have stood
long outstanding problem for physicists. The most intrigui
and still unsolved puzzle perhaps is the so-called Ander
localization. The concept of Anderson localization was i
tially proposed nearly half a century ago for the possi
phenomenon of disorder-induced metal-insulator transi
in electronic systems@1#. To make it simple, Anderson loca
ization refers to situations where electrons, when release
a random medium which could be, for instance, a free sp
with random potentials, may stay close to the initial pla
The envelope of the electronic wave function subsequent
revealed as an exponential decay along any direction f
the emitting point@2#; the length measuring the e-fold deca
is called the localization length. The mechanism behind
property has been attributed purely to sufficient multip
scattering of electrons by the random potentials, a featur
the wave nature of electrons.

Since its inception, the localization concept has opene
wide door for scientists from various backgrounds, a
stimulated a vast body of research. The fact that electro
localization is due to the wave nature of electrons is parti
larly important, as the concept may also be applied to c
sical wave systems by analogy@3#. The concept of localiza-
tion has far reached many fields such as seismology@4#,
oceanology@5#, and random lasers@6#, to name just a few.
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The great efforts have been summarized in a number of
views ~e.g., Refs.@2,7–13#!.

Over the past two decades, localization of electromagn
and acoustic waves has been and continues to be a pa
larly attracting problem, leading to a great amount of pub
cations~e.g., Refs.@8–10,14–28#!. The theory of classica
waves has been detailed in the textbook@9#. In spite of the
tremendous efforts, however, there are still some open q
tions for wave localization in two-dimensional~2D! random
systems. For example, one of them concerns with the tra
port behavior of waves within and outside localization r
gimes. It has been discussed much in the literature
within the localization regime the wave intensity follows
diffusive behavior for transport path smaller than localizati
length, whereas it follows an exponential decay when
path is greater than the localization length@9,29#. In addition,
it has been conjectured that all waves are bound to be lo
ized in 2D for any given amount of disorders or randomn
@30#, a conclusion significantly influencing nearly all late
investigations. If this general hypothesis is true, one wo
expect that the wave intensity would have to follow the d
fusion to localization transition as the transport distance
creases although such a transition has not been solidly
firmed yet, to the best of knowledge. Recent studi
however, tend to suggest that this conjecture may not
generally valid@31,32#. On one hand, in Ref.@31# it has been
suggested that acoustic waves could not be localized in
tain frequency ranges, as would have been expected. On
other hand, the research reported in Ref.@32# reveals differ-
ent frequency regimes of electromagnetic~EM! wave trans-
port. In certain ranges, the wave transport behavior can
entirely described by the usual Boltzmann-diffusion appro
mate theory, while in others the behavior does not perform
diffusive feature. The authors called the latter phenome
anomalous diffusion, and interpreted it as the incipience
Anderson localization. These works seem to uncover tha
the frequency varies, there will be a transition between

er,
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calization and nonlocalization in two-dimensional disorde
media. Whether these observations also hold in a gen
perspective, however, remains to be known.

The difficulties in the study of possible nonlocalization
localization of EM waves mainly lie in a number of prob
lems. First, wave localization only appears for strongly sc
tering media, and such a medium is often hard to find. S
ond, localization effects are often entangled with oth
effects such as dissipation, wave deflection, or boundary
fects @13#, making data interpretation possibly ambiguou
Third, in spite of the fact that many two-dimensional syste
are exactly solvable by numerical computation, the simu
tion is very time consuming and is obviously limited b
computing facilities with regard to some unavoidable pro
lems such as finite size. How to find a suitable model t
could ease these concerns poses a challenging problem
own right.

In a recent communication, a simple but seemingly re
istic model system has been proposed to study EM local
tion in 2D random media@33#. This model originated from
the previous study of the radiative effects of the electric
poles embedded in structured cavities@34#. It was shown that
EM localization is possible in such a disordered syste
When localization occurs, a coherent behavior appears a
revealed as a unique property differentiating localizat
from either the residual absorption or the attenuation effe

In the present paper, we wish to explore further the tra
port properties of the system outlined in Ref.@33#. The ad-
vantage of this system not only rests on its simplicity b
also on its relatively less time consumption. It has be
shown that there is a strong localization region in the syst
We will investigate the transport behavior of wave intens
within, near the edge of, and outside the strong localiza
regime. We study how the transport behavior depends
scatterer’s filling parameter, frequency, sample size and
on. When the localization effect is less obvious, we comp
the numerically evaluated wave intensity with the result fro
the diffusion theory.

The paper is structured as follows. The description of
system and the relevant theoretical modeling are presente
the following section, followed by the numerical simulatio
and detailed discussion of results. A summary concludes
paper in the last section.

II. THE SYSTEM AND THEORETICAL FORMULATION

Here we present the system and the theoretical form
tion. Although these have already been presented be
@35#, for the sake of convenience on the reader’s part
easy discussion on our part, we purposely repeat the ess
here.

A. The system

Following Erdoganet al. @34#, we consider 2D dipoles a
an ensemble of harmonically bound charge elements. In
way, each 2D dipole is regarded as a single dipole line, c
acterized by the charge and dipole moment per unit len
Assume thatN parallel dipole lines, aligned along thez axis,
are embedded in a uniform dielectric medium andrandomly
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located atrW i ( i 51,2, . . . ,N). The averaged distance betwee
dipoles isd. A stimulating dipole line source is located atrWs ,
transmitting a continuous wave of angular frequencyv. By
the geometrical symmetry of the system, we only need
consider thez component of the electrical waves.

B. The formulation

Although much of the following materials can be referr
to in Ref. @33#, we repeat the important parts here for t
sake of convenience and completeness.

Upon stimulation, each dipole will radiate EM waves. T
radiated waves will then repeatedly interact with the dipol
forming a process of multiple scattering. The equation
motion for thei th dipole is

d2

dt2
pi1v0,i

2 pi5
qi

2

mi
Ez~rW i !2b0,i

d

dt
pi for i 51,2, . . . ,N,

~1!

wherev0,i is the resonance~natural! frequency;pi , qi , and
mi the dipole moment, charge, and effective mass per
length of thei th dipole, respectively.Ez(rW i) is the total elec-
trical field acting on dipolepi , which includes the radiated
field from other dipoles and also the directly field from th
source. The factorb0,i denotes the damping due to ener
loss and radiation, and can be determined by energy con
vation. Without energy loss~such as heat!, b0,i can be deter-
mined from the balance between the radiative and vibratio
energies, and is given as@34#

b0,i5
qi

2v0,i

4emic
2

, ~2!

with e being the permittivity constant andc the speed of light
in the medium separately.

Equation~1! is virtually the same as Eq.~1! in Ref. @34#.
The only difference is that in Ref.@34#, Ez is the reflected
field at the dipole due to the presence of reflecting surrou
ing structures, while in the present case the field is from
stimulating source and the radiation from all other dipole

The transmitted electrical field from the continuous li
source is determined by the Maxwell equations@34#

S ¹22
]2

c2]t2D G0~rW2rWs!524m0v2p0pd (2)~rW2rWs!e
2 ivt,

~3!

where v is the radiation frequency andp0 is the source
strength and is set to be unity. The solution of Eq.~3! is
clearly

G0~rW2rWs!5~m0v2p0!ipH0
(1)~kurW2rWsu!e2 ivt, ~4!

with k5v/c and H0
(1) being the zeroth-order Hankel func

tion of the first kind.
Similarly, the radiated field from thei th dipole is given by
8-2
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DIFFUSIVE AND LOCALIZATION BEHAVIOR OF . . . PHYSICAL REVIEW E 68, 046608 ~2003!
S ¹22
]2

c2]t2D Gi~rW2rW i !5m0

d2

dt2
pid

(2)~rW2rW i !. ~5!

The field arriving at thei th dipole is composed of the direc
field from the source and the radiation from all other dipol
and thus is given as

Ez~rW i !5G0~rW i2rWs!1 (
j 51,j Þ i

N

Gj~rW i2rW j !. ~6!

Substituting Eqs.~4!, ~5!, and ~6! into Eq. ~1!, and writing
pi5pie

2 ivt, we arrive at

~2v21v0,i
2 2 ivb0,i !pi

5
qi

2

mi
FG0~rW i2rWs!1 (

j 51,j Þ i

N
m0v2

4
iH 0

(1)~kurW i2rW j u!pj G .

~7!

This set of linear equations can be solved numerically forpi .
After pi are obtained, the total field at any space point can
readily calculated from

Ez~rW !5G0~rW2rWs!1(
j 51

N

Gj~rW2rW j !. ~8!

In the standard approach to wave localization, waves are
to be localized when the square modulus of the fielduE(rW)u2,
representing the wave energy, is spatially localized after
trivial cylindrically spreading effect is eliminated. Obviousl
this is equivalent to, say, that the further away is the dip
from the source, the smaller is its oscillation amplitude, a
the decay is expected to follow an exponentially decreas
pattern.

An alternative two-dimensional dipole model was devis
previously by other authors@22#. There, the authors derived
set of linear algebraic equations, which is similar in form
the above Eq.~6!. However, the fundamental difference b
tween the two models is with respect to the relation betw
the incident and the scattered waves. In Ref.@22#, the inter-
action between dipoles and the external field is derived
the energy conservation, while in the present case the
pling is determined without ambiguity by the Newton’s se
ond law. The former leads to an undetermined phase fa
According to, e.g., Refs.@34,36#, the energy conservatio
can give the radiation factor in Eq.~2!.

There are several ways to introduce randomness to
~7!. For example, the disorder may be introduced by r
domly varying properties of individual dipoles such as t
charge, the mass, or the two combined. This is the m
common way by which the disorder is introduced into t
tight-binding model for electronic waves@37#. In the present
study, the disorder is brought in by the random spatial dis
bution of the dipoles.

For simplicity yet without losing generality, assume th
all the dipoles are identical and they are randomly distribu
within a certain area. The source is located at the center~set
to be the origin! of this area. For convenience, we make E
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~7! non-dimensional by scaling the frequency by the re
nance frequency of a single dipolev0. This will lead to two
independent nondimensional parametersb5q2m0/4m and
b085(v/v0)(b0 /v0). Both parameters may be adjusted
the experiment. For example, the factorb0 can be modified
by coating layered structures around the dipoles@34#. Then
Eq. ~7! becomes simply

~2 f 2112 ib08!pi5 ib f 2Fp0H0
(1)~kurW i2rWsu!

1 (
j 51,j Þ i

N

pjH0
(1)~kurW i2rW j u!G ~9!

FIG. 1. Conceptual layout of the system and the simulation.

FIG. 2. The transmission vs the reduced frequency. Here
number of dipoles is 1964 and the radius of the sample is 10
length; this amounts to a filling of about 6.25.
8-3



le
-
g
-
-
l
e
to
e-

K. K.-H. WANG ANG Z. YE PHYSICAL REVIEW E 68, 046608 ~2003!
FIG. 3. Transport behavior for a fixed samp
size: ~a! the total, coherent, and diffusive inten
sity as a function of the dimensionless travelin
distance;~b! the comparison of the numerical re
sults of the total energy with that from the diffu
sion theory;~c! the comparison of the numerica
results of the diffusive energy with that from th
diffusion theory. We considered 1964 dipoles
form a sample whose radius is roughly 10. Her
after, the ‘‘reduced distance’’ along thex axis re-
fers to the distance scaled byl, as defined in the
text.
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with f 5v/v0. Equation ~9! is self-consistent and can b
solved numerically forpi and then the total field is obtaine
through Eqs.~3!, ~5!, and~8!.

C. Expected transport behavior

1. In general

Following Ref.@38#, a general consideration of the spat
behavior of wave transport is possible. Consider a w
transmitted in a random medium. The transport equation
the total energy intensityI, i.e., ^uEu2&, may be intuitively
written as

dI

dx
52aI , ~10!

wherea represents decay along the path traversed. After p
etrating into the random medium, the wave will be scatte
by random inhomogeneities. As a result, the wave cohere
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starts to decrease, yielding the way to incoherence. Ext
tion of the coherent intensityI C , i.e., u^E&u2, is described by

dIC

dx
52gI C , ~11!

with the attenuation constantg. Equatons~10! and~11! lead
to the exponential solutions

I ~x!5I ~0!e2ax and I C~x!5I ~0!e2gx. ~12!

In deriving these equations, the boundary condition w
used; it states thatI (0)5I C(0) as no scattering has bee
incurred yet at the starting point. According to the ener
conservation, the incoherent intensityI D ~diffusive! is thus

I D~x!5I ~x!2I C~x!. ~13!

When there is no absorption, the decay constanta is ex-
pected to vanish and the total intensity will then be const
along the propagation path. Then, the coherent energy gr
8-4
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FIG. 4. Dependence of the transport behav
on the sample size for the reduced frequen
k/k051.013. The following parameters are take
~1! Diagrams~a1! to ~c1!: dipole number5491,
sample radius55. ~2! Diagrams~a2! to ~c2!: di-
pole number5982, sample radius57. ~3! Dia-
grams~a3! to ~c3!: dipole number51473, sample
radius59. ~4! Diagrams ~a4! to ~c4!: dipole
number51964, sample radius510. ~5! Diagrams
~a5! to ~c5!: dipole number52455, sample radius
511. The average has been calculated over 4
random configurations.
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ally decreases due to random scattering and transforms t
diffusive energy, while the sum of the two forms of ener
remains a constant. This scenario, however, changes w
localization occurs. Even without absorption, the total inte
sity can be localized near the initial point due to multip
scattering. When this happens,a does not vanish. The trans
port of the total intensity may be still described by Eq.~10!,
and the inverse ofa would then refer to the localization
length.

2. Diffusion theory

As discussed above, as waves propagate, the coheren
ergy gradually decreases and the incoherent~the so-called
diffusive waves! progressively grows. In the absence of l
calization, the diffusive intensity~or energy! will eventually
surpasses the coherent energy at a certain point, then
comes the dominating component in the wave transmiss
This intuitive physical picture has been nicely phrased in
very excellent textbook by Ishimaru@39#.
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The diffusive waves are expected to follow the diffusio
equation which can be described by

S D¹22
]

]t D I D52Sd~rW2rWs!, ~14!

whereD is the diffusive constant andS denotes a strength
factor which is related to the total emitted energyI 0 and
transport mean free pathl t . In the steady situation, this equa
tion is simplified as@32,39#

¹2I D52
2I 0

l t
d~rW2rWs!. ~15!

The boundary condition for the diffusive waves is@39#

I D1
2l t

3

]I

]n U
n

50, ~16!

with nW being the outward normal at the boundary.
8-5
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FIG. 5. Dependence of the transport behav
on the sample size for the higher reduced fr
quency k/k051.014. The following parameter
are taken. ~1! Diagrams ~a1! to ~c1!: dipole
number5491, sample radius55. ~2! Diagrams
~a2! to ~c2!: dipole number5982, sample
radius57. ~3! Diagrams ~a3! to ~c3!: dipole
number51473, sample radius59. ~4! Diagrams
~a4! to ~c4!: dipole number51964, sample radius
10. ~5! Diagrams ~a5! to ~c5!: dipole number
52455, sample radius511. The average has bee
calculated over 400 random configurations.
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As discussed in Ref.@40#, the traditional way of measur
ing for localization effects, that is putting the source at o
side of a sample and measuring the transmission acros
sample on the other side, may be influenced rather sig
cantly by other nonlocalization effects such as reflection
the present paper we use an alternative setup in line with
previous studies@32#: Put the source in the middle of a sca
tering sample which takes a circular shape. In this cas
solution to the diffusive intensity is given as@32#

I D52
I 0

p l t
ln~r /R!1I b , ~17!

whereR is the sample radius, i.e., the size of the cluster
the scatterers, andI b is the intensity at the boundary. In pra
tice, l t can be regarded as a free parameter to fit the num
cal simulation. When the diffusive energy is dominant, t
total energy would be expected to also follow the behav
characterized by Eq.~17!.
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III. THE RESULTS AND DISCUSSION

A conceptual set up of the system for discussion is p
tured in Fig. 1. Here it is shown that a source is located at
center of a sample circled by the broken line. The sm
circles inside refer to the dipoles as the scatterers. The
ceiver is placed at various spatial positions along the ra
direction to record the transmitted waves.

A. Parameters in the simulation

Unless otherwise noted, the following parameters are u
in the numerical simulation: the nondimensional damp
rateb0 /v050.001 and the interaction couplingb50.001.

In the calculation, we scale all lengths by a unit lengtl
which is chosen such thatk0l 51, and the frequency byv0.
In this way, the frequency always enters asv/v0 or equiva-
lently k/k0 and the distance or lengths enter asx/ l ; both are
therefore dimensionless and are called the reduced frequ
and reduced distance or length, respectively.
8-6
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DIFFUSIVE AND LOCALIZATION BEHAVIOR OF . . . PHYSICAL REVIEW E 68, 046608 ~2003!
An important parameter controlling the wave propagat
behavior is the number of dipoles per unit area, which
called the filling factor and is denoted byb. As a case study
the filling factor b is taken as about 6.25, i.e., obtained
putting 1964 dipoles within a sample of radius 10 u
length. Without notification, we will use this filling factor
However, some effects due to the variation of the filling fa
tor will also be shown in the later part.

We find that all the results to be shown below are o
dependent on parametersb, b0 /v0, and the ratiov/v0 or
equivalentlyk/k0. Such a simple scaling property may faci
tate designing experiments. In the numerical computat
we takec51 for convenience. The total normalized wave
a spatial point is scaled asT(rW)[E(rW)/E0(rW), with E0 being
the direct wave from the source, so that the trivial geome
spreading effect is naturally removed. When compared w
diffusion theory, the diffusive energy would have to be m
tiplied by the spreading factor, to becomeI Dr . In the simu-
lation, the number of random configurations for averaging
taken in such a way that the convergency is assured.

B. Numerical results and discussion

1. The regime of inhibited transmission

First we plot the wave transmission versus the redu
frequency to locate the strong localization region. The re
is shown in Fig. 2. The receiver is located outside at ab
1.2 radius of the sample. We see that there is a very str
inhibition region ranging roughly from 1.001 to 1.012. Ou
side this regime, the inhibition is not obvious. We have tr
our current computing facility to its extremes with the large
possible number of dipoles, but we still failed to see obvio
inhibition outside the regime. The width of the strong inh
bition window mainly depends on the filling factor—th
window gets wider and wider monotonically with the in
creasing filling factor.

FIG. 6. The transmission vs the reduced frequency. The par
eters are as follows.~1! 2150 dipoles in a circular sample, amoun
ing to a sample radius of 15, leading to the filling factor of arou
3.00; ~2! the receiver is positioned outside at 1.2 radius of
sample.
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2. Transport behavior in general

We choose five frequencies, indicated in Fig. 2, to stu
the localization or diffusion behaviors of the wave intensi
In Fig. 3, we plot the transmission behavior of various inte
sities as a function of wave traveling distance for a fix
sample size. The distance has been scaled to be dimen
less byl, as aforementioned. Enough average over the r
dom distributions of the scatterers is taken to ensure the
bility of the results; the maximum number of the average
1200. The observations in Fig. 3 can be summarized as
lows.

~1! It is clear from the left panel that within the stron
inhibition window, the transmission perfectly follows the e
pected localization behavior: the total and coherent inten
decays exponentially with slightly different slopes, while t
diffusive intensity increases initially, then saturates, follow
by a decay afterwards. These are shown by~a1!.

~2! As the frequency moves towards the edge of the str
inhibition window, the behavior starts to change more a
more severely. As the frequency increases gradually, the
energy starts to behave more like that of diffusive wav
although the diffusive waves are not yet dominant@such as in
~a2!#. But overall speaking, the transport behavior of that
total energy behaves more like the diffusive waves when
latter are prominent, as expected and shown by~a3! and~a4!.

~3! At frequencies for which the diffusive intensity i
dominant, the behavior of the diffusive energy is quali
tively in agreement with the prediction of the diffusio
theory, such as in the cases described by~c3!, but in certain
cases the agreement is good both qualitatively and quan
tively as seen in~c4!. Generally speaking, however, th
agreement is less encouraging compared with the simula
for another 2D system illustrated in Ref.@32#. And the rapid
fluctuation of the diffusive energy shown in Ref.@32# is ab-
sent here. Another note is worth making here. In Ref.@32#,
the authors also compared the results within a strong lo
ization region. The exponential decay revealed in their fi
ures, for example Fig. 9, is only possible when the cylind
cal geometrical spreading factor 1/r is taken out. It seems to
us that this factor may not have been considered in th
discussion.

~4! Just by looking, we are tempted to conclude that th
is indeed a fundamental difference in the transport behav
between within and outside the strong inhibition region. T
phenomenon accords qualitatively with the observation
Ref. @32#.

~5! We also observe that outside the strong inhibition
gime, the coherent intensity does not necessarily behav
an exponential decay, exemplified by~a3! and~a4!. This is in
contrast to usual expectation. A plausible cause is the fi
size effects which are unavoidable due to the limitation
the computing facilities. In fact, the waves can be reflected
the interface between the free space and the spatial dom
filled with the dipoles, and the reflected waves thus contr
ute to the intensities inside the sample. In this situation,
mean free path is hard to estimate, unlike in other syste
@29,40#.

-
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FIG. 7. Transport behavior:~a! the total, co-
herent, and diffusive intensity as a function of th
reduced traveling distance;~b! the comparison of
the numerical results of the total energy with th
from the diffusion theory;~c! the comparison of
the numerical results of the diffusive energy wi
that from the diffusion theory. We considere
2150 dipoles to form a sample whose radius
15, in accordance with Fig. 6.
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3. Sample size and frequency effects

From Fig. 3, we see that at aroundk/k051.013, just out-
side the upper edge of the strong localization boundary,
diffusive waves are dominant and the transport beha
tends to follow the prediction from the diffusion theory. No
we would like to explore the robustness of such an agr
ment as the sample size and frequency vary.

The results of the sample size effects are shown in Fig
Here it shows that as the size of the sample, in terms of
sample radius, is increased, the diffusive intensity beco
more and more prominent, meanwhile the agreement
tween the diffusion and exact numerical results is improv
as shown by the diagrams from the top downwards. Ho
ever, there is always some discrepancy between the sim
tion and theoretical results. The reason why we have ta
five sample sizes for discussion is purely to show the grad
improvement in the agreement.

When we consider another close frequencyk/k051.014,
the agreement does not seem to improve as the sample s
enlarged. The comparison is shown in Fig. 5. The best ag
04660
e
r

e-

4.
e

es
e-
,
-
la-
n

al

e is
e-

ment is when the sample size is 7, referring to~b2! and~c2!.
From these results, one may say that the agreement betw
the diffusion theory and the exact numerical results may
be robust, at least in the present system. We have to note
the results from the diffusion theory are approximate. T
deviation from the diffusion theory is therefore not out
expectation.

4. Different filling factor

We also considered the case for a smaller filling factor
about 3.00. The general features are agreeable with the a
case with 6.26. For brevity, we just show partial results. F
ure 6 shows the transmission versus the reduced freque
The parameters are given in the figure caption. Compare
the case with filling factor of 6.25, we see that decreas
filling factor only tends to reduce the strong inhibition r
gime while all other features remain more or less the sa
as compared to Fig. 2.

Again we choose five frequencies to inspect the transp
behavior, and show the results in Fig. 7. The general con
8-8
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DIFFUSIVE AND LOCALIZATION BEHAVIOR OF . . . PHYSICAL REVIEW E 68, 046608 ~2003!
sions drawn from Fig. 3 remain qualitatively unchange
However, there are differences. For the frequency 1.
which is within the strong localization regime, the transp
behavior fully complies with the expectation. The diffusiv
intensity increases, saturates, and then decreases, while
ing over as the dominating part in the total transmission.
replot Fig. 7~a1! in Fig. 8 to show this behavior. The cros
over point at which the diffusive part becomes dominating
represented by the vertical line in the figure.

5. Fluctuation behavior in the transmission

Finally, we have computed the fluctuation of the norm
ized transmission intensity versus the reduced frequency.
results are shown in Fig. 9. The parameters are as follo
filling factor ~number of dipole/area!56.25; two sample
sizes are 5 and 10, respectively; the receiver is at 1.2 ti
the radius of the sample; and the number of average is
The results indicate that the fluctuation is nearly zero wit
the localization regions. Outside these regimes, the fluc
tion is comparatively strong. The results also show that
localization regime is the same for different sample siz
These features hint that there may be a localization trans
in 2D random media, in accordance with the previous res
@31,32#.

IV. SUMMARY

In this paper, we have discussed the transport prope
of electromagnetic waves in a two-dimensional random s

FIG. 8. Replotted results of Fig. 7~a1!.
n
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n
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tem. Some general properties of the transport phenomena
elaborated. For certain ranges of frequencies, strongly lo
ized electromagnetic waves have been observed in su
system. The spatial behavior of the total, coherent, and
fusive waves is explored within, near the edge of, and o
side the localization regime, and is investigated for differe
parameters such as filling factor and system size.

The results show that within the localization regim
waves are trapped near the transmitting source. Meanw
the diffusive waves follow an intuitive but expected pictur
For the cases that the frequencies are near the boundary
outside the localization regime, the results of diffusive wav
are compared with the diffusion approximation, showing le
encouraging agreement as in other systems@32#. Further-
more, the results tend to suggest that the study of the fl
tuation behavior in the transmission may also help iden
the localization regime.
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